Uncertainty Quantification and Stochastic Modeling withMATLAB
نویسندگان
چکیده
منابع مشابه
Sparse multiresolution stochastic approximation for uncertainty quantification
Most physical systems are inevitably affected by uncertainties due to natural variabili-ties or incomplete knowledge about their governing laws. To achieve predictive computer simulations of such systems, a major task is, therefore, to study the impact of these uncertainties on response quantities of interest. Within the probabilistic framework, uncertainties may be represented in the form of r...
متن کاملSatellite Re-entry Modeling and Uncertainty Quantification
LEO trajectory modeling is a fundamental aerospace capability and has applications in many areas of aerospace, such as maneuver planning, sensor scheduling, re-entry prediction, collision avoidance, risk analysis, and formation flying. Somewhat surprisingly, modeling the trajectory of an object in low Earth orbit is still a challenging task. This is primarily due to the large uncertainty in the...
متن کاملPerformance Metrics, Error Modeling, and Uncertainty Quantification
A common set of statistical metrics has been used to summarize the performance ofmodels ormeasurements— the most widely used ones being bias, mean square error, and linear correlation coefficient. They assume linear, additive, Gaussian errors, and they are interdependent, incomplete, and incapable of directly quantifying uncertainty. The authors demonstrate that these metrics can be directly de...
متن کاملForward and Backward Uncertainty Quantification in Optimization
This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.
متن کاملUncertainty quantification in modeling HIV viral mechanics.
We consider an in-host model for HIV-1 infection dynamics developed and validated with patient data in earlier work [7]. We revisit the earlier model in light of progress over the last several years in understanding HIV-1 progression in humans. We then consider statistical models to describe the data and use these with residual plots in generalized least squares problems to develop accurate des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Software
سال: 2015
ISSN: 1548-7660
DOI: 10.18637/jss.v067.b07